3.316 \(\int \frac{\cos (c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=90 \[ \frac{2 b (A b-a B) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{x (A b-a B)}{a^2}+\frac{A \sin (c+d x)}{a d} \]

[Out]

-(((A*b - a*B)*x)/a^2) + (2*b*(A*b - a*B)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b
]*Sqrt[a + b]*d) + (A*Sin[c + d*x])/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.149073, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {4034, 12, 3783, 2659, 208} \[ \frac{2 b (A b-a B) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 d \sqrt{a-b} \sqrt{a+b}}-\frac{x (A b-a B)}{a^2}+\frac{A \sin (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

-(((A*b - a*B)*x)/a^2) + (2*b*(A*b - a*B)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b
]*Sqrt[a + b]*d) + (A*Sin[c + d*x])/(a*d)

Rule 4034

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n)/(a*f*n), x]
+ Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*B*n - A*b*(m + n + 1) + A*a*(n +
1)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b
- a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3783

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(-1), x_Symbol] :> Simp[x/a, x] - Dist[1/a, Int[1/(1 + (a*Sin[c + d
*x])/b), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx &=\frac{A \sin (c+d x)}{a d}-\frac{\int \frac{A b-a B}{a+b \sec (c+d x)} \, dx}{a}\\ &=\frac{A \sin (c+d x)}{a d}-\frac{(A b-a B) \int \frac{1}{a+b \sec (c+d x)} \, dx}{a}\\ &=-\frac{(A b-a B) x}{a^2}+\frac{A \sin (c+d x)}{a d}+\frac{(A b-a B) \int \frac{1}{1+\frac{a \cos (c+d x)}{b}} \, dx}{a^2}\\ &=-\frac{(A b-a B) x}{a^2}+\frac{A \sin (c+d x)}{a d}+\frac{(2 (A b-a B)) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}+\left (1-\frac{a}{b}\right ) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^2 d}\\ &=-\frac{(A b-a B) x}{a^2}+\frac{2 b (A b-a B) \tanh ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{a^2 \sqrt{a-b} \sqrt{a+b} d}+\frac{A \sin (c+d x)}{a d}\\ \end{align*}

Mathematica [A]  time = 0.208126, size = 85, normalized size = 0.94 \[ \frac{-\frac{2 b (A b-a B) \tanh ^{-1}\left (\frac{(b-a) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{\sqrt{a^2-b^2}}+(c+d x) (a B-A b)+a A \sin (c+d x)}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

((-(A*b) + a*B)*(c + d*x) - (2*b*(A*b - a*B)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/Sqrt[a^2 -
b^2] + a*A*Sin[c + d*x])/(a^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.097, size = 172, normalized size = 1.9 \begin{align*} 2\,{\frac{A\tan \left ( 1/2\,dx+c/2 \right ) }{ad \left ( 1+ \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) }}-2\,{\frac{A\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) b}{d{a}^{2}}}+2\,{\frac{B\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) }{ad}}+2\,{\frac{A{b}^{2}}{d{a}^{2}\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-2\,{\frac{Bb}{ad\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}{\it Artanh} \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)

[Out]

2/d/a*A*tan(1/2*d*x+1/2*c)/(1+tan(1/2*d*x+1/2*c)^2)-2/d/a^2*A*arctan(tan(1/2*d*x+1/2*c))*b+2/d/a*B*arctan(tan(
1/2*d*x+1/2*c))+2/d*b^2/a^2/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*A-2/d*b/
a/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 0.542725, size = 702, normalized size = 7.8 \begin{align*} \left [\frac{2 \,{\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} d x -{\left (B a b - A b^{2}\right )} \sqrt{a^{2} - b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) -{\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt{a^{2} - b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) + 2 \,{\left (A a^{3} - A a b^{2}\right )} \sin \left (d x + c\right )}{2 \,{\left (a^{4} - a^{2} b^{2}\right )} d}, \frac{{\left (B a^{3} - A a^{2} b - B a b^{2} + A b^{3}\right )} d x -{\left (B a b - A b^{2}\right )} \sqrt{-a^{2} + b^{2}} \arctan \left (-\frac{\sqrt{-a^{2} + b^{2}}{\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) +{\left (A a^{3} - A a b^{2}\right )} \sin \left (d x + c\right )}{{\left (a^{4} - a^{2} b^{2}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*(2*(B*a^3 - A*a^2*b - B*a*b^2 + A*b^3)*d*x - (B*a*b - A*b^2)*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a
^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x +
 c)^2 + 2*a*b*cos(d*x + c) + b^2)) + 2*(A*a^3 - A*a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d), ((B*a^3 - A*a^2*b
- B*a*b^2 + A*b^3)*d*x - (B*a*b - A*b^2)*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2
- b^2)*sin(d*x + c))) + (A*a^3 - A*a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \sec{\left (c + d x \right )}\right ) \cos{\left (c + d x \right )}}{a + b \sec{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)

[Out]

Integral((A + B*sec(c + d*x))*cos(c + d*x)/(a + b*sec(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 1.17341, size = 190, normalized size = 2.11 \begin{align*} \frac{\frac{{\left (B a - A b\right )}{\left (d x + c\right )}}{a^{2}} + \frac{2 \, A \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )} a} - \frac{2 \,{\left (B a b - A b^{2}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a^{2} + b^{2}}}\right )\right )}}{\sqrt{-a^{2} + b^{2}} a^{2}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

((B*a - A*b)*(d*x + c)/a^2 + 2*A*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 + 1)*a) - 2*(B*a*b - A*b^2)*(pi
*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqr
t(-a^2 + b^2)))/(sqrt(-a^2 + b^2)*a^2))/d